Authors
Marco Meyer, Carsten Jentsch, Jens-Peter Kreiss
Publication date
2017/11
Journal
Bernoulli
Volume
23
Issue
4B
Pages
2988-3020
Publisher
Bernoulli Society for Mathematical Statistics and Probability
Description
The concept of the autoregressive (AR) sieve bootstrap is investigated for the case of spatial processes in . This procedure fits AR models of increasing order to the given data and, via resampling of the residuals, generates bootstrap replicates of the sample. The paper explores the range of validity of this resampling procedure and provides a general check criterion which allows to decide whether the AR sieve bootstrap asymptotically works for a specific statistic of interest or not. The criterion may be applied to a large class of stationary spatial processes. As another major contribution of this paper, a weighted Baxter-inequality for spatial processes is provided. This result yields a rate of convergence for the finite predictor coefficients, i.e. the coefficients of finite-order AR model fits, towards the autoregressive coefficients which are inherent to the underlying process under mild conditions. The developed check …
Scholar articles
M Meyer, C Jentsch, JP Kreiss - 2017